
xC
oA

x
20

23
 1

1t
h
Co

nf
er

en
ce

 o
n

Co
mp

ut
at

io
n,

 C
om

mu
ni

ca
ti

on
,

Ae
st

he
ti

cs
 &

 X

20
23

.x
Co

Ax
.o

rg
We

im
ar

,
Ge

rm
an

y

414

c0l1v3 is an improvisational, collaborative, interactive audiovisual
performance, and a live coding web-based instrument created by
Bruno Gola. The collaboration aspect is implemented in a way that
anyone with a device running a web browser can join at any time
and play. There is no login or credentials, c0l1v3 is always running
and accessible via its URL. The website works as a frontend to a
SuperCollider program running on the server-side. It streams audio
and data back to the browser with low latency using WebRTC, so all
players are controlling the same sound process. c0l1v3’s	interface	is	
an experiment in breaking the traditional top-to-bottom linear code
writing approach, it presents a canvas where players can add code
anywhere,	and	all	players	can	edit	each	other’s	code	blocks.	In	c0l1v3
there is no distinction between performers and audience.

Keywords: Live Coding, Nonlinear, Audiovisual, Network Music,
Collaborative Art, Computer Music, Distributed Performance,
Improvised Music.

Bruno Gola

me@bgo.la

Universität der Künste, Berlin, Germany

DOI 10.34626/xcoax.2023.11th.414

c0l1v3: A Collaborative
Nonlinear Live Coding
Instrument

https://doi.org/10.34626/xcoax.2023.11th.414

415

Description

c0l1v3 is an experiment in collaborative improvised live coding and
less traditional ways of collectively writing code to control an audio-
visual instrument. It is always available as an open playground on
the web, working as an online public square where anyone can enter
and listen to others playing and jam together.1

Background

During the beginning of the CoVID-19	pandemic I started working
together with Prof. Alberto de Campo in the context of the Generative
Kunst / Computational Arts class at the Berlin University of the Arts
to develop tools that could support the class on continuing working
in its hands-on, live experimentation practice even remotely. During
the two months before the beginning of the summer semester of
2020, we developed tcposcrouter, ws2udp and HyperDisCo, all tools
that make it simple to collaborate in SuperCollider live coding ses-
sions over the internet.

Simultaneously	I	was	playing	in	different	live	events	online,	such	as	
algoraves,	and	watching	many	live	streamed	performances	in	differ-
ent formats. During that time I was getting frustrated with the lack
of direct feedback in my own performances, it was hard to feel like
I was playing live or that there was an audience on the other end, so
I started imagining ways to make my performances more alive and
reactive.

In the beginning of 2021, as part of the On-The-Fly program, I had
the opportunity to be Artist-in-Residency at Ljudmila Art and Sci-
ence Lab, in Slovenia. There I started working on the project that
became c0l1v3. During the residence my goal was to build an in-
stallation called Co-op{codes}. In this installation the visitors could
experiment with live coding: there were two computers running the
same	software,	and	with	those	two	computers	the	audience	could	
control the audiovisual instrument that I developed using SuperCol-
lider	which	consisted	of	3	projectors	and	8	speakers.	The	software	
interface was designed in a way that anyone could experiment by
just double clicking anywhere on the screen to add a random piece
of valid code. Each block of code added to the interface had its own
editing space. The interface followed no order between blocks, and
each	block	could	be	executed	independently.	The	software	was	run-
ning on a web browser, both computers were connected via the Wi-Fi
and changes made on each computer would be shown simultaneous-
ly on the other.

1. https://c0l1v3.bgo.la/

https://c0l1v3.bgo.la/

416

Distributed Performance

At the end of my residency in Ljudmila I took part in the Algopolis
event by performing live with Co-op{codes}. That was a solo perfor-
mance but opened the way to the next step of that research, trans-
forming the installation into this open, web based instrument, that
could be online and I could perform at any time with it, and also
invite the audience to join me writing code together.

During the rest of 2021 and beginning of 2022 I kept working on the
concepts	and	software	for	what	became	c0l1v3. The main challenge
was to stream the audio over the web with good quality and low
latency, for me it was very important to have as low latency as pos-
sible so that everyone playing could react together. The solution for
that was WebRTC. I started writing my own solution called Spatify for
another project in 2019, but in 2021 I found Janus WebRTC Server and
its streaming plugin. Using gstreamer to stream from SuperCollider to
Janus it is possible to have multiple web clients receiving the same
audio and data stream with very low latency.

The text interface synchronisation uses websockets so that all the
players see what each other is typing. Commands are sent to the
server via websocket and then sent to SuperCollider. The websocket
server-side is connected to SuperCollider using tcposcrouter so it
works as a proxy between oSC messages of SuperCollider and Web-
Socket messages from the browser.

Using tcposcrouter also enables multiple synchronised SuperCollider
servers	running	in	different	locations,	in	a	more	distributed	perfor-
mance approach, being independent of internet connection in case
the internet fails. For example one person can run their own full
setup consisting of SuperCollider, the HTML/JavaScript frontend and
a local ws2udp to proxy websocket messages to oSC. The SuperCollider

Figure 1: Co-op{codes} installation in
Ljudmila, Slovenia.

417

program would connect to other SuperCollider instances using OS-
CRouter class and being on the same OSCrouter group as the other
players, sharing code this way, and the sound comes directly out of
the local SuperCollider sound engine. If the connection fails at any
moment, the sound is not interrupted since the sound is produced
locally in this case.

Nonlinear Editor & Domain Specific Language

Two essential features of c0l1v3 are its DSL,	or	Domain	Specific	
Language, and its nonlinear text editor. Because of my experience
with Linux systems and the Python programming language. I started
designing the language inspired by REPL environments. REPL stands
for Read-Eval-Print-Loop, and is a standard way of communicating
with command line programs in UNIX environments. For me REPL
provides a simple text-based way for controlling processes. So in
c0l1v3 every block of code is treated as a command in a REPL envi-
ronment, and the user or player evaluates one command or block
each time. This, and the fact that blocks can be added anywhere in
the interface, without any line structure, makes it hard to create big
blocks of continuous code.

In my experience working with other live coding environments
my programmer self would always show up and be in the way of
the performer self. I would end up writing big functions and large
blocks of code that would do complex musical things, but would lose
the improvised quick responsiveness that I was searching for when
performing.

Figure 2: Technical audio and data
flow	diagram	for	c0l1v3.

418

By designing the language and environment focusing on short
blocks of code and rapid switching between blocks, the c0l1v3 envi-
ronment	invites	players	to	experiment	and	improvise,	to	go	in	differ-
ent	directions.	Blocks	of	code	that	are	not	evaluated	after	a	certain	
time are deleted from the screen, also forcing players to move on to
new things.

The system also makes heavy use of JITLib, a SuperCollider library for
Just-in-Time, or interactive, programming. With the help of JILib it is
possible to do controlled random changes to the sound process, and
this is encouraged by c0l1v3’s	philosophy.	Be	it	small	random	moves	
through its dimensional space, to explore sounds found during a
performance	or	big	random	changes	to	go	in	a	completely	different	
direction. Players can also store and recall the current state, as well
as	morph	in	time	or	step	by	step	between	two	different	states.

Figure 3: c0l1v3 web interface.

